Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 375
1.
J Neurosci ; 44(17)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38514181

The initiation of abstinence after chronic drug self-administration is stressful. Cocaine-seeking behavior on the first day of the absence of the expected drug (Extinction Day 1, ED1) is reduced by blocking 5-HT signaling in dorsal hippocampal cornu ammonis 1 (CA1) in both male and female rats. We hypothesized that the experience of ED1 can substantially influence later relapse behavior and that dorsal raphe (DR) serotonin (5-HT) input to CA1 may be involved. We inhibited 5-HT1A/1B receptors (WAY-100635 plus GR-127935), or DR input (chemogenetics), in CA1 on ED1 to test the role of this pathway on cocaine-seeking persistence 2 weeks later. We also inhibited 5-HT1A or 5-HT1B receptors in CA1 during conditioned place preference (CPP) for cocaine, to examine mechanisms involved in the persistent effects of ED1 manipulations. Inhibition of DR inputs, or 5-HT1A/1B signaling, in CA1 decreased drug seeking on ED1 and decreased cocaine seeking 2 weeks later revealing that 5-HT signaling in CA1 during ED1 contributes to persistent drug seeking during abstinence. In addition, 5-HT1B antagonism alone transiently decreased drug-associated memory performance when given prior to a CPP test, whereas similar antagonism of 5-HT1A alone had no such effect but blocked CPP retrieval on a test 24 h later. These CPP findings are consistent with prior work showing that DR inputs to CA1 augment recall of the drug-associated context and drug seeking via 5-HT1B receptors and prevent consolidation of the updated nondrug context via 5-HT1A receptors. Thus, treatments that modulate 5-HT-dependent memory mechanisms in CA1 during initial abstinence may facilitate later maintenance of abstinence.


Cocaine , Drug-Seeking Behavior , Oxadiazoles , Serotonin , Animals , Male , Drug-Seeking Behavior/physiology , Drug-Seeking Behavior/drug effects , Rats , Serotonin/metabolism , Female , Cocaine/administration & dosage , Cocaine/pharmacology , Hippocampus/metabolism , Hippocampus/drug effects , Pyridines/pharmacology , Serotonin Antagonists/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology , Piperazines/pharmacology , Rats, Sprague-Dawley , Cocaine-Related Disorders/metabolism , Cocaine-Related Disorders/psychology , Self Administration , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Receptor, Serotonin, 5-HT1B/metabolism , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism
2.
Behav Brain Res ; 449: 114488, 2023 07 09.
Article En | MEDLINE | ID: mdl-37169129

BACKGROUND: Parkinson's disease (PD) is commonly accompanied with anxiety, multiple studies indicate that the basolateral amygdaloid nucleus (BLA) is closely related to modulation of anxiety and expresses serotonin1B (5-HT1B) receptors, however, effects of BLA 5-HT1B receptors on anxiety-like behaviors are unclear, particularly in PD-related anxiety. METHODS: The open-field and elevated plus maze tests were used to examine anxiety-like behaviors. In vivo electrophysiology and microdialysis were performed to observe the firing activity of BLA neurons and GABA, glutamate, dopamine (DA) and 5-HT release in the BLA, respectively. Western blotting was used to analyze protein expression of 5-HT1B receptors, adenylate cyclase (AC) and phosphorylated protein kinase A at threonine 197 site (p-PKA-Thr197) in the BLA. RESULTS: Intra-BLA injection of 5-HT1B receptor agonist CP93129 produced anxiety-like effects and antagonist SB216641 induced anxiolytic-like responses in sham-operated and 6-hydroxydopamine-lesioned rats. Further, pretreatment with AC inhibitor SQ22536 and PKA inhibitor KT5720 blocked the behavioral effects of CP93129, respectively. Intra-BLA injection of CP93129 increased the firing rate of BLA glutamate neurons and decreased GABA/glutamate ratio and DA and 5-HT levels in the BLA of sham-operated and the lesioned rats, while SB216641 induced the opposite effects. Compared with sham-operated rats, effects of CP93129 and SB216641 on behaviors, electrophysiology and microdialysis were decreased in the lesioned rats, which were associated with decreased expression of 5-HT1B receptors, AC and p-PKA-Thr197 in the BLA. CONCLUSION: These findings suggest that 5-HT1B receptor-AC-PKA signal pathway in the BLA is involved in the regulation of PD-related anxiety.


Basolateral Nuclear Complex , Parkinson Disease , Rats , Animals , Parkinson Disease/complications , Serotonin/metabolism , Basolateral Nuclear Complex/metabolism , Adenylyl Cyclases/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Rats, Sprague-Dawley , Anxiety , Dopamine/metabolism , gamma-Aminobutyric Acid , Glutamates
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article En | MEDLINE | ID: mdl-36674499

The Bdnf (brain-derived neurotrophic factor) gene contains eight regulatory exons (I-VIII) alternatively spliced to the protein-coding exon IX. Only exons I, II, IV, and VI are relatively well studied. The BDNF system and brain serotonergic system are tightly interconnected and associated with aggression. The benzopentathiepine TC-2153 affects both systems and exerts antiaggressive action. Our aim was to evaluate the effects of TC-2153 on the Bdnf exons I-IX's expressions and serotonin receptors' mRNA levels in the brain of rats featuring high aggression toward humans (aggressive) or its absence (tame). Aggressive and tame adult male rats were treated once with vehicle or 10 or 20 mg/kg of TC-2153. mRNA was quantified in the cortex, hippocampus, hypothalamus, and midbrain with real-time PCR. Selective breeding for high aggression or its absence affected the serotonin receptors' and Bdnf exons' transcripts differentially, depending on the genotype (strain) and brain region. TC-2153 had comprehensive effects on the Bdnf exons' expressions. The main trend was downregulation in the hypothalamus and midbrain. TC-2153 increased 5-HT1B receptor hypothalamusc mRNA expression. For the first time, an influence of TC-2153 on the expressions of Bdnf regulatory exons and the 5-HT1B receptor was shown, as was an association between Bdnf regulatory exons and fear-induced aggression involving genetic predisposition.


Brain-Derived Neurotrophic Factor , Receptor, Serotonin, 5-HT1B , Humans , Rats , Animals , Male , Brain-Derived Neurotrophic Factor/metabolism , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT1B/metabolism , Brain/metabolism , Fear/physiology , RNA, Messenger/analysis , Hippocampus/metabolism , Aggression/physiology
4.
Neuron ; 111(5): 711-726.e11, 2023 03 01.
Article En | MEDLINE | ID: mdl-36584680

Retinal ganglion cell (RGC) types relay parallel streams of visual feature information. We hypothesized that neuromodulators might efficiently control which visual information streams reach the cortex by selectively gating transmission from specific RGC axons in the thalamus. Using fiber photometry recordings, we found that optogenetic stimulation of serotonergic axons in primary visual thalamus of awake mice suppressed ongoing and visually evoked calcium activity and glutamate release from RGC boutons. Two-photon calcium imaging revealed that serotonin axon stimulation suppressed RGC boutons that responded strongly to global changes in luminance more than those responding only to local visual stimuli, while the converse was true for suppression induced by increases in arousal. Converging evidence suggests that differential expression of the 5-HT1B receptor on RGC presynaptic terminals, but not differential density of nearby serotonin axons, may contribute to the selective serotonergic gating of specific visual information streams before they can activate thalamocortical neurons.


Geniculate Bodies , Receptor, Serotonin, 5-HT1B , Serotonin , Thalamus , Animals , Mice , Axons/physiology , Calcium , Geniculate Bodies/physiology , Receptor, Serotonin, 5-HT1B/metabolism , Retinal Ganglion Cells/physiology , Serotonin/metabolism , Thalamus/physiology
5.
Neurol Res ; 45(2): 127-137, 2023 Feb.
Article En | MEDLINE | ID: mdl-36127643

OBJECTIVE: The aim of the present study was to investigate whether serotonin1B (5-HT1B) receptor-adenylate cyclase (AC)-protein kinase A (PKA) signal pathway in the lateral habenula (LHb) is involved in Parkinson's disease-related depression in sham-lesioned and substantia nigra pars compacta (SNc)-lesioned rats. METHODS: The sucrose preference and forced swim tests were used to measure depressive-like behaviors. In vivo electrophysiology and microdialysis were performed to observe the firing activity of LHb neurons and GABA and glutamate release in the LHb, respectively. Western blotting was used to analyze protein expression of 5-HT1B receptors, AC and phosphorylated PKA at threonine 197 site (p-PKA-Thr197) in the LHb. RESULTS: Unilateral 6-hydroxydopamine lesions of the SNc in rats induced depressive-like behaviors. Intra-LHb injection of 5-HT1B receptor agonist CP93129 produced antidepressant-like effects and the antagonist SB216641 induced depressive-like behaviors in sham-lesioned and SNc-lesioned rats. Further, pretreatment with AC inhibitor SQ22536 and PKA inhibitor KT5720 blocked the behavioral effects of CP93129 in the two groups of rats, respectively. CP93129 decreased the firing rate of LHb neurons and release of GABA and glutamate, but increased the GABA/glutamate ratio, while SB216641 induced the opposite effects. Compared with sham-lesioned rats, effects of CP93129 and SB216641 on the depressive-like behaviors, electrophysiology, and microdialysis were decreased in SNc-lesioned rats, which were associated with decreased expression of 5-HT1B receptors, AC and p-PKA-Thr197 in the LHb. CONCLUSION: 5-HT1B receptor-AC-PKA signal pathway in the LHb is involved in the regulation of depressive-like behaviors, and depletion of DA reduces activity of 5-HT1B receptor-AC-PKA signal pathway.


Habenula , Parkinson Disease , Rats , Animals , Serotonin/metabolism , Oxidopamine/toxicity , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/pharmacology , Receptor, Serotonin, 5-HT1B/metabolism , Depression/metabolism , Parkinson Disease/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP-Dependent Protein Kinases/pharmacology , Glutamates/metabolism , Glutamates/pharmacology , gamma-Aminobutyric Acid/metabolism
6.
Biochem Pharmacol ; 206: 115317, 2022 12.
Article En | MEDLINE | ID: mdl-36374715

G protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK) modulate vascular tone and contraction via rapid and long-term processes. Sustained activation of these receptor types can change vascular structure, and the ability of vasculature to adapt to high pressure. In this study, the interaction between serotonin (5-HT) receptors and epidermal growth factor receptors (EGFR) on vasoconstriction and the mechanisms of EGFR transactivation and its downstream mediators were investigated. We measured 5-HT-induced vasoconstriction in the aorta and the mesenteric artery; and the effects of EGFR, Src and PI3K, and their downstream mediators Erk1/2 and Akt phosphorylation on 5-HT-mediated vasoconstriction in the presence or absence of pharmacological inhibitors of Ca2+/CaM, EGFR, Src, and PI3K. Furthermore, we determined the contribution of 5-HT receptor subtypes to 5-HT-induced vasoconstriction and EGFR transactivation using selective 5-HT2A and 5-HT1B receptors ligands. Our results show that EGFR, Src, and PI3K are involved in 5-HT-induced vasoconstriction both in the aorta and the mesenteric artery, and that these kinases have a more prominent role in the mesenteric artery than the aorta. With regard to EGFR transactivation by 5-HT, Ca2+/CaM, Src and PI3K are upstream mediators, and transactivation is partly mediated by Erk1/2 and Akt activation. Furthermore, Ca2+/CaM, Src, and PI3K are the main regulators for Akt activation, however Src only has a prominent role for Erk1/2 activation. 5-HT2A and 5-HT1B receptors have different EGFR transactivation profiles through Src and/or PI3K, with 5-HT2A having a greater role than 5-HT1B receptors.


ErbB Receptors , src-Family Kinases , src-Family Kinases/metabolism , ErbB Receptors/metabolism , Vasoconstriction/physiology , Serotonin/pharmacology , Serotonin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Transcriptional Activation , Phosphorylation
7.
Psychopharmacology (Berl) ; 239(12): 3875-3892, 2022 Dec.
Article En | MEDLINE | ID: mdl-36282287

BACKGROUND: Deep brain stimulation (DBS) delivered to the ventromedial prefrontal cortex (vmPFC) induces antidepressant- and anxiolytic-like responses in various animal models. Electrophysiology and neurochemical studies suggest that these effects may be dependent, at least in part, on the serotonergic system. In rodents, vmPFC DBS reduces raphe cell firing and increases serotonin (5-HT) release and the expression of serotonergic receptors in different brain regions. METHODS: We examined whether the behavioural responses of chronic vmPFC DBS are mediated by 5-HT1A or 5-HT1B receptors through a series of experiments. First, we delivered stimulation to mice undergoing chronic social defeat stress (CSDS), followed by a battery of behavioural tests. Second, we measured the expression of 5-HT1A and 5-HT1B receptors in different brain regions with western blot. Finally, we conducted pharmacological experiments to mitigate the behavioural effects of DBS using the 5-HT1A antagonist, WAY-100635, or the 5-HT1B antagonist, GR-127935. RESULTS: We found that chronic DBS delivered to stressed animals reduced the latency to feed in the novelty suppressed feeding test (NSF) and immobility in the forced swim test (FST). Though no significant changes were observed in receptor expression, 5-HT1B levels in DBS-treated animals were found to be non-significantly increased in the vmPFC, hippocampus, and nucleus accumbens and reduced in the raphe compared to non-stimulated controls. Finally, while animals given vmPFC stimulation along with WAY-100635 still presented significant responses in the NSF and FST, these were mitigated following GR-127935 administration. CONCLUSIONS: The antidepressant- and anxiolytic-like effects of DBS in rodents may be partially mediated by 5-HT1B receptors.


Anti-Anxiety Agents , Deep Brain Stimulation , Animals , Mice , Serotonin/metabolism , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Social Defeat , Prefrontal Cortex , Disease Models, Animal , Antidepressive Agents/pharmacology , Antidepressive Agents/metabolism , Receptor, Serotonin, 5-HT1B/metabolism
8.
Mol Psychiatry ; 27(12): 4881-4892, 2022 12.
Article En | MEDLINE | ID: mdl-36117214

Exaggerated startle has been recognized as a core hyperarousal symptom of multiple fear-related anxiety disorders, such as post-traumatic stress disorder (PTSD) and panic disorder. However, the mechanisms driving this symptom are poorly understood. Here we reveal a neural projection from dorsal raphe nucleus (DRN) to a startle-controlling center reticulotegmental nucleus (RtTg) that mediates enhanced startle response under fear condition. Within RtTg, we identify an inhibitory microcircuit comprising GABAergic neurons in pericentral RtTg (RtTgP) and glutamatergic neurons in central RtTg (RtTgC). Inhibition of this RtTgP-RtTgC microcircuit leads to elevated startle amplitudes. Furthermore, we demonstrate that the conditioned fear-activated DRN 5-HTergic neurons send inhibitory projections to RtTgP GABAergic neurons, which in turn upregulate neuronal activities of RtTgC glutamatergic neurons. Chemogenetic activation of the DRN-RtTgP projections mimics the increased startle response under fear emotions. Moreover, conditional deletion of 5-HT1B receptor from RtTgP GABAergic neurons largely reverses the exaggeration of startle during conditioned fear. Thus, our study establishes the disinhibitory DRN-RtTgP-RtTgC circuit as a critical mechanism underlying exaggerated startle under fear emotions, and provides 5-HT1B receptor as a potential therapeutic target for treating hyperarousal symptom in fear-associated psychiatric disorders.


Fear , Receptor, Serotonin, 5-HT1B , Dorsal Raphe Nucleus , Fear/physiology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Mesencephalon/metabolism , Mesencephalon/physiology , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT1B/metabolism , Reflex, Startle/physiology , Animals , Mice
9.
J Exp Med ; 219(8)2022 08 01.
Article En | MEDLINE | ID: mdl-35796804

Triptans are a class of commonly prescribed antimigraine drugs. Here, we report a previously unrecognized role for them to suppress appetite in mice. In particular, frovatriptan treatment reduces food intake and body weight in diet-induced obese mice. Moreover, the anorectic effect depends on the serotonin (5-HT) 1B receptor (Htr1b). By ablating Htr1b in four different brain regions, we demonstrate that Htr1b engages in spatiotemporally segregated neural pathways to regulate postnatal growth and food intake. Moreover, Htr1b in AgRP neurons in the arcuate nucleus of the hypothalamus (ARH) contributes to the hypophagic effects of HTR1B agonists. To further study the anorexigenic Htr1b circuit, we generated Htr1b-Cre mice. We find that ARH Htr1b neurons bidirectionally regulate food intake in vivo. Furthermore, single-nucleus RNA sequencing analyses revealed that Htr1b marks a subset of AgRP neurons. Finally, we used an intersectional approach to specifically target these neurons (Htr1bAgRP neurons). We show that they regulate food intake, in part, through a Htr1bAgRP→PVH circuit.


Appetite , Receptor, Serotonin, 5-HT1B , Agouti-Related Protein/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Mice , Mice, Obese , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT1B/metabolism
10.
Neuropsychopharmacology ; 47(10): 1863-1868, 2022 09.
Article En | MEDLINE | ID: mdl-35821068

Synaptic serotonin levels in the brain are regulated by active transport into the bouton by the serotonin transporter, and by autoreceptors, such as the inhibitory serotonin (5-HT) 1B receptor which, when activated, decreases serotonin release. Animal studies have shown a regulatory link between the two proteins. Evidence of such coupling could translate to an untapped therapeutic potential in augmenting the effect of selective serotonin reuptake inhibitors through pharmacological modulation of 5-HT1B receptors. Here we will for the first time in vivo examine the relationship between 5-HT1B receptors and serotonin transporters in the living human brain. Seventeen healthy individuals were examined with PET twice, using the radioligands [11C]AZ10419369 and [11C]MADAM for quantification of the 5-HT1B receptor and the 5-HT transporter, respectively. The binding potential was calculated for a set of brain regions, and the correlations between the binding estimates of the two radioligands were studied. [11C]AZ10419369 and [11C]MADAM binding was positively correlated in all examined brain regions. In most cortical regions the correlation was strong, e.g., frontal cortex, r(15) = 0.64, p = 0.01 and parietal cortex, r(15) = 0.8, p = 0.0002 while in most subcortical regions, negligible correlations was observed. Though the correlation estimates in cortex should be interpreted with caution due to poor signal to noise ratio of [11C]MADAM binding in these regions, it suggests a link between two key proteins involved in the regulation of synaptic serotonin levels. Our results indicate a need for further studies to address the functional importance of 5-HT1B receptors in treatment with drugs that inhibit serotonin reuptake.


Serotonin Plasma Membrane Transport Proteins , Serotonin , Animals , Brain , Humans , Positron-Emission Tomography/methods , Receptor, Serotonin, 5-HT1B/metabolism , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Selective Serotonin Reuptake Inhibitors/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology
11.
J Headache Pain ; 23(1): 26, 2022 Feb 17.
Article En | MEDLINE | ID: mdl-35177004

BACKGROUND: 5-Hydroxytryptamine (5-HT) receptors 1B, 1D and 1F have key roles in migraine pharmacotherapy. Selective agonists targeting these receptors, such as triptans and ditans, are effective in aborting acute migraine attacks and inhibit the in vivo release of calcitonin gene-related peptide (CGRP) in human and animal models. The study aimed to examine the localization, genetic expression and functional aspects of 5- HT1B/1D/1F receptors in the trigeminal system in order to further understand the molecular sites of action of triptans (5-HT1B/1D) and ditans (5-HT1F). METHODS: Utilizing immunohistochemistry, the localization of 5-HT and of 5-HT1B/1D/1F receptors was examined in rat trigeminal ganglion (TG) and combined with quantitative polymerase chain reaction to quantify the level of expression for 5-HT1B/1D/1F receptors in the TG. The functional role of these receptors was examined ex vivo with a capsaicin/potassium induced 5-HT and CGRP release. RESULTS: 5-HT immunoreactivity (ir) was observed in a minority of CGRP negative C-fibres, most neuron somas and faintly in A-fibres and Schwann cell neurolemma. 5-HT1B/1D receptors were expressed in the TG, while the 5-HT1F receptor displayed a weak ir. The 5-HT1D receptor co-localized with receptor activity-modifying protein 1 (RAMP1) in Aδ-fibres in the TG, while 5-HT1B-ir was weakly expressed and 5-HT1F-ir was not detected in these fibres. None of the 5-HT1 receptors co-localized with CGRP-ir in C-fibres. 5-HT1D receptor mRNA was the most prominently expressed, followed by the 5-HT1B receptor and lastly the 5-HT1F receptor. The 5-HT1B and 5-HT1D receptor antagonist, GR127935, could reverse the inhibitory effect of Lasmiditan (a selective 5-HT1F receptor agonist) on CGRP release in the soma-rich TG but not in soma-poor TG or dura mater. 5-HT release in the soma-rich TG, and 5-HT content in the baseline samples, negatively correlated with CGRP levels, showing for the first time a physiological role for 5-HT induced inhibition. CONCLUSION: This study reveals the presence of a subgroup of C-fibres that store 5-HT. The data shows high expression of 5-HT1B/1D receptors and suggests that the 5-HT1F receptor is a relatively unlikely target in the rat TG. Furthermore, Lasmiditan works as a partial agonist on 5-HT1B/1D receptors in clinically relevant dose regiments.


Serotonin , Tryptamines , Animals , Benzamides , Calcitonin Gene-Related Peptide/metabolism , Piperidines/pharmacology , Pyridines , Rats , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT1B/metabolism , Receptor, Serotonin, 5-HT1D/metabolism , Serotonin/metabolism , Trigeminal Ganglion/metabolism , Tryptamines/pharmacology
12.
J Cereb Blood Flow Metab ; 42(4): 630-641, 2022 04.
Article En | MEDLINE | ID: mdl-34644198

The serotonin 1B (5-HT1B) receptor has lately received considerable interest in relation to psychiatric and neurological diseases, partly due to findings based on quantification using Positron Emission Tomography (PET). Although the brainstem is an important structure in this regard, PET radioligand binding quantification in brainstem areas often shows poor reliability. This study aims to improve PET quantification of 5-HT1B receptor binding in the brainstem.Volumes of interest (VOIs) were selected based on a 3D [3H]AZ10419369 Autoradiography brainstem model, which visualized 5-HT1B receptor distribution in high resolution. Two previously developed VOI delineation methods were tested and compared to a conventional manual method. For a method based on template data, a [11C]AZ10419369 PET template was created by averaging parametric binding potential (BPND) images of 52 healthy subjects. VOIs were generated based on a predefined volume and BPND thresholding and subsequently applied to test-retest [11C]AZ10419369 parametric BPND images of 8 healthy subjects. For a method based on individual subject data, VOIs were generated directly on each individual parametric image.Both methods showed improved reliability compared to a conventional manual VOI. The VOIs created with [11C]AZ10419369 template data can be automatically applied to future PET studies measuring 5-HT1B receptor binding in the brainstem.


Brain Stem , Radiopharmaceuticals , Receptor, Serotonin, 5-HT1B , Autoradiography , Brain/diagnostic imaging , Brain/metabolism , Brain Stem/diagnostic imaging , Humans , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Reproducibility of Results
13.
Microvasc Res ; 139: 104260, 2022 01.
Article En | MEDLINE | ID: mdl-34624308

OBJECTIVES: To explore whether minimally modified low-density lipoprotein (mmLDL) upregulates mesenteric arterial 5-hydroxytryptamine 1B (5-HT1B) receptor expression by activating the JAK2/STAT3 signaling pathway. METHODS: Mice were randomly divided into the following groups: the normal saline (NS), LDL, mmLDL, mmLDL+galiellactone (GL, a JAK2/STAT3 pathway inhibitor), and mmLDL+DMSO groups. The dose-response curve of mesenteric arterial ring constriction after administration of 5-carboxamidotryptamine (5-CT), an agonist of 5-HT1B, was recorded with a microvascular tensiometer. JAK2, p-JAK2, STAT3, p-STAT3, and 5-HT1B receptor protein expression levels were determined by Western blotting. 5-HT1B receptor mRNA levels were measured by RT-PCR. 5-HT1B receptor protein expression was determined by immunofluorescence. RESULTS: Injection of mmLDL into the tail vein significantly increased the contractile dose-response curve after 5-CT stimulation, as the Emax was 82.15 ±â€¯6.15% in the NS group and 171.88 ±â€¯5.78% in the mmLDL group (P < 0.01); significantly elevated 5-HT1B receptor mRNA and protein expression levels; and significantly increased p-JAK2 and p-STAT3 protein expression levels. After intraperitoneal injection of GL, the vasoconstrictive response was significantly reduced compared with that in the mmLDL group, as the Emax was decreased to 97.14 ±â€¯1.20% (P < 0.01); 5-HT1B receptor mRNA and protein expression levels were significantly reduced; STAT3 phosphorylation and p-JAK2 and p-STAT3 protein expression were not significantly changed; and 5-HT1B receptor expression was altered via inhibition of p-STAT3 binding to DNA, which suppressed transcription. CONCLUSIONS: mmLDL can upregulate 5-HT1B receptor expression in mouse mesenteric arteries by activating the JAK2/STAT3 signaling pathway.


Janus Kinase 2/metabolism , Lipoproteins, LDL/pharmacology , Mesenteric Arteries/drug effects , Receptor, Serotonin, 5-HT1B/metabolism , STAT3 Transcription Factor/metabolism , Vasoconstriction/drug effects , Animals , Enzyme Activation , Female , Male , Mesenteric Arteries/enzymology , Mice , Phosphorylation , Receptor, Serotonin, 5-HT1B/genetics , Signal Transduction , Up-Regulation
14.
Fundam Clin Pharmacol ; 36(1): 100-113, 2022 Feb.
Article En | MEDLINE | ID: mdl-34061415

Over the past decades, great attention has been given to the nervous system modulating effects on the immune response in inflammation-associated injuries, such as acute intestinal ischemia-reperfusion (IR). Recently, we proved the anti-inflammatory and antioxidant effects of 5-hydroxytryptamine (5-HT)1B/1D receptors in intestinal IR injury in rats. Also, the alpha7 nicotinic acetylcholine (α7-nACh) receptor has anti-inflammatory effects in different inflammation-associated injuries. Starting from these premises, we aimed to examine the function of the α7-nACh receptors and the functional interactions between the anti-inflammatory and antioxidant effects of α7-nACh and 5-HT1B/1D receptors in acute intestinal IR injury. To confirm the expression and localization of α7-nACh receptors on the ileum nerves, an immunofluorescence-based method was applied. Then, intestinal IR injury was induced by 30-min occlusion of superior mesenteric artery and reperfusion for 2 h in rats. Acute systemic administration of α7-nACh receptor agonist PNU-282987 and antagonist methyllycaconitine, and 5-HT1B/1D receptors agonist (sumatriptan) and antagonist (GR127, 935) were used in the model of intestinal IR injury. Finally, biochemical and histological parameters were assessed. Α7-nACh receptors were expressed by 9% on the ileum nerves. Likewise, activation of the α7-nACh receptor showed anti-inflammatory and antioxidant effects in intestinal IR injury but not as well as 5-HT1B/1D receptors. Interestingly, 5-HT1B/1D receptors via attenuation of glutamate (Glu) release indirectly activated the α7-nACh receptor and its protective effects against inflammation and oxidative stress. The protective effect of the α7-nACh receptor on intestinal IR injury was activated indirectly through the 5-HT1B/1D receptors' modulatory impact on Glu release.


Receptor, Serotonin, 5-HT1B/metabolism , Receptor, Serotonin, 5-HT1D/metabolism , Reperfusion Injury , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Rats , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Serotonin 5-HT1 Receptor Agonists , Sumatriptan
15.
Nature ; 599(7883): 96-101, 2021 11.
Article En | MEDLINE | ID: mdl-34616037

Social memory-the ability to recognize and remember familiar conspecifics-is critical for the survival of an animal in its social group1,2. The dorsal CA2 (dCA2)3-5 and ventral CA1 (vCA1)6 subregions of the hippocampus, and their projection targets6,7, have important roles in social memory. However, the relevant extrahippocampal input regions remain poorly defined. Here we identify the medial septum (MS) as a dCA2 input region that is critical for social memory and reveal that modulation of the MS by serotonin (5-HT) bidirectionally controls social memory formation, thereby affecting memory stability. Novel social interactions increase activity in dCA2-projecting MS neurons and induce plasticity at glutamatergic synapses from MS neurons onto dCA2 pyramidal neurons. The activity of dCA2-projecting MS cells is enhanced by the neuromodulator 5-HT acting on 5-HT1B receptors. Moreover, optogenetic manipulation of median raphe 5-HT terminals in the MS bidirectionally regulates social memory stability. This work expands our understanding of the neural mechanisms by which social interactions lead to social memory and provides evidence that 5-HT has a critical role in promoting not only prosocial behaviours8,9, but also social memory, by influencing distinct target structures.


Memory/physiology , Neural Pathways , Septal Nuclei/physiology , Serotonin/metabolism , Social Behavior , Animals , CA2 Region, Hippocampal/cytology , CA2 Region, Hippocampal/physiology , Female , Glutamic Acid/metabolism , Male , Mice , Neuronal Plasticity , Optogenetics , Pyramidal Cells/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Septal Nuclei/cytology , Synapses/metabolism
16.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article En | MEDLINE | ID: mdl-34638540

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is associated with various symptoms, such as depression, pain, and fatigue. To date, the pathological mechanisms and therapeutics remain uncertain. The purpose of this study was to investigate the effect of myelophil (MYP), composed of Astragali Radix and Salviaemiltiorrhizae Radix, on depression, pain, and fatigue behaviors and its underlying mechanisms. Reserpine (2 mg/kg for 10 days, intraperitoneally) induced depression, pain, and fatigue behaviors in mice. MYP treatment (100 mg/kg for 10 days, intragastrically) significantly improved depression behaviors, mechanical and thermal hypersensitivity, and fatigue behavior. MYP treatment regulated the expression of c-Fos, 5-HT1A/B receptors, and transforming growth factor ß (TGF-ß) in the brain, especially in the motor cortex, hippocampus, and nucleus of the solitary tract. MYP treatment decreased ionized calcium binding adapter molecule 1 (Iba1) expression in the hippocampus and increased tyrosine hydroxylase (TH) expression and the levels of dopamine and serotonin in the striatum. MYP treatment altered inflammatory and anti-oxidative-related mRNA expression in the spleen and liver. In conclusion, MYP was effective in recovering major symptoms of ME/CFS and was associated with the regulation of dopaminergic and serotonergic pathways and TGF-ß expression in the brain, as well as anti-inflammatory and anti-oxidant mechanisms in internal organs.


Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Drugs, Chinese Herbal/pharmacology , Fatigue Syndrome, Chronic/drug therapy , Hippocampus/metabolism , Animals , Behavior, Animal/drug effects , Calcium-Binding Proteins/biosynthesis , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine/analysis , Inflammation/drug therapy , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/biosynthesis , Proto-Oncogene Proteins c-fos/metabolism , Reactive Oxygen Species/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Reserpine/adverse effects , Serotonin/analysis , Transforming Growth Factor beta1/metabolism , Tyrosine 3-Monooxygenase/biosynthesis
17.
Science ; 373(6560): 1252-1256, 2021 Sep 10.
Article En | MEDLINE | ID: mdl-34516792

Compulsive drug use despite adverse consequences defines addiction. While mesolimbic dopamine signaling is sufficient to drive compulsion, psychostimulants such as cocaine also boost extracellular serotonin (5-HT) by inhibiting reuptake. We used SERT Met172 knockin (SertKI) mice carrying a transporter that no longer binds cocaine to abolish 5-HT transients during drug self-administration. SertKI mice showed an enhanced transition to compulsion. Conversely, pharmacologically elevating 5-HT reversed the inherently high rate of compulsion transition with optogenetic dopamine self-stimulation. The bidirectional effect on behavior is explained by presynaptic depression of orbitofrontal cortex­to­dorsal striatum synapses induced by 5-HT via 5-HT1B receptors. Consequently, in projection-specific 5-HT1B receptor knockout mice, the fraction of individuals compulsively self-administering cocaine was elevated.


Cocaine-Related Disorders/metabolism , Receptor, Serotonin, 5-HT1B/metabolism , Serotonin/metabolism , Synaptic Transmission , Animals , Cocaine/administration & dosage , Cocaine-Related Disorders/genetics , Dopamine/metabolism , Gene Knock-In Techniques , Mice , Mice, Knockout , Optogenetics , Receptor, Serotonin, 5-HT1B/deficiency , Serotonin Plasma Membrane Transport Proteins/metabolism
18.
Life Sci ; 285: 119951, 2021 Nov 15.
Article En | MEDLINE | ID: mdl-34516994

AIMS: We sought to evaluate the effects of overfeeding during lactation on the feeding behavior and expression of specific regulatory genes in brain areas associated with food intake in 22- and 60-day old male rats. METHODS: We evaluated body weight, food intake of standard and palatable diet, and mRNA expression of dopamine receptor D1 (DDR1), dopamine receptor (DDR2), melanocortin 4 receptor (MC4R), the µ-opioid receptor (MOR), neuropeptide Y (NPY), agouti-related protein (AGRP), proopiomelanocortin (POMC), cocaine-and amphetamine-regulated transcript (CART), serotonin (5-hydroxytryptamine; 5-HT) transporter (SERT), 5-hydroxytryptamine receptor 1B (5-HT1B), 5-hydroxytryptamine receptor 2C receptor (5-HT2C), Clock (CLOK), cryptochrome protein 1 (Cry1) and period circadian protein homolog 2 (Per2) in the striatum, hypothalamus and brainstem of male rats at post-natal days (PND) 22 and 60. KEY FINDINGS: Overfeeding resulted in significantly increased body weight through PND60, and a 2-fold increase in palatable food intake at PND22, but not at PND60. We observed significant increases in DDR1, DDR2, and MC4R gene expression in the striatum and brainstem and POMC/CART in the hypothalamus of the OF group at PND22 that were reversed by PND60. Hypothalamic levels of 5-HT1B, 5-HT2C and NPY/AGRP on the other hand were decreased at PND22 and increased at PND60 in OF animals. Clock genes were unaffected by OF at PND22, but were significantly elevated at PND60. SIGNIFICANCE: Overfeeding during early development of the rat brain results in obesity and altered feeding behavior in early adulthood. The altered behavior might be the consequence of the changes in food intake and reward gene expression.


Body Weight , Brain/growth & development , Brain/physiopathology , Feeding Behavior , Overnutrition/physiopathology , Animals , CLOCK Proteins/metabolism , Cryptochromes/metabolism , Eating , Female , Lactation , Male , RNA-Binding Proteins/metabolism , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1B/metabolism , Receptor, Serotonin, 5-HT2C/metabolism
19.
J Neurosci ; 41(37): 7831-7847, 2021 09 15.
Article En | MEDLINE | ID: mdl-34348999

The principal neurons of the striatum, the spiny projection neurons (SPNs), make inhibitory synaptic connections with each other via collaterals of their main axon, forming a local lateral inhibition network. Serotonin, acting via the 5-HT1B receptor, modulates neurotransmitter release from SPN terminals in striatal output nuclei, but the role of 5-HT1B receptors in lateral inhibition among SPNs in the striatum is unknown. Here, we report the effects of 5-HT1B receptor activation on lateral inhibition in the mouse striatum. Whole-cell recordings were made from SPNs in acute brain slices of either sex, while optogenetically activating presynaptic SPNs or fast-spiking interneurons (FSIs). Activation of 5-HT1B receptors significantly reduced the amplitude of IPSCs evoked by optical stimulation of both direct and indirect pathway SPNs. This reduction was blocked by application of a 5-HT1B receptor antagonist. Activation of 5-HT1B receptors did not reduce the amplitude of IPSCs evoked from FSIs. These results suggest a new role for serotonin as a modulator of lateral inhibition among striatal SPNs. The 5-HT1B receptor may, therefore, be a suitable target for future behavioral experiments investigating the currently unknown role of lateral inhibition in the function of the striatum.SIGNIFICANCE STATEMENT We show that stimulation of serotonin receptors reduces the efficacy of lateral inhibition between spiny projection neurons (SPNs), one of the biggest GABAergic sources in the striatum, by activation of the serotonin 5-HT1B receptor. The striatum receives serotonergic input from the dorsal raphe nuclei and is important in behavioral brain functions like learning and action selection. Our findings suggest a new role for serotonin in modulating the dynamics of neural interactions in the striatum, which extends current knowledge of the mechanisms of the behavioral effects of serotonin.


Corpus Striatum/drug effects , Neural Inhibition/drug effects , Neurons/drug effects , Receptor, Serotonin, 5-HT1B/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Action Potentials/drug effects , Animals , Corpus Striatum/metabolism , Interneurons/drug effects , Interneurons/metabolism , Mice , Neurons/metabolism , Patch-Clamp Techniques , Serotonin/metabolism , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/metabolism
20.
J Pharm Pharmacol ; 73(12): 1592-1598, 2021 Dec 07.
Article En | MEDLINE | ID: mdl-34244776

OBJECTIVES: This study evaluates the effect of 5-HT 1b/d agonist on cognitive function in scopolamine (SPN)-induced dementia in the rat. METHODS: Dementia was induced by administration of SPN 2 mg/kg/day, intraperitoneally, for a duration of 21 days. The effect of zolmitriptan (ZMT) 30 mg/kg, intraperitoneally, was observed on cognitive function, and the parameters of oxidative stress like malondialdehyde (MDA) level, nitric oxide (NO), superoxide dismutase (SOD) and glutathione peroxidase (GPX) were estimated at the end. Histopathology study of brain tissue was performed for the determination of ß-amyloid peptide, and qRT-PCR was used to determine the mRNA expression of Toll-like receptor 4 (TLR-4), IL-17 and ß-amyloid. KEY FINDINGS: Data of the study suggested that treatment with ZMT alone and in combination with DMP (dextromethorphan) significantly (P < 0.01) decreases the escape latency in conditioned avoidance response (CAR) and transfer latency in elevated plus maze (EPM) as compared with negative control group. Moreover, the result of Morris water maze (MWM) shows an increase in retention time and a decrease in escape latency in ZMT alone and in combination with DMP-treated group of SPN-induced dementia than in the negative control group. There was a significant decrease in MDA and NO and increase in SOD and GPX in the brain tissues of ZMT and ZMT + DMP-treated group than negative control group. Histopathology study also suggested that the concentration of Aß peptide decreases in the brain tissues in ZMT and ZMT + DMP-treated group than the negative control group. Moreover, ZMT treatment ameliorates the altered mRNA expression of TLR-4 and IL-17 in the brain tissue of SPN-induced dementia rat. CONCLUSIONS: In conclusion, ZMT restores the cognitive functions and impaired memory in SPN-induced dementia in the rat by decreasing oxidative stress and Aß peptide in the brain tissue of rat.


Amyloid beta-Peptides/metabolism , Cognition/drug effects , Dementia/metabolism , Glutamic Acid/metabolism , Oxazolidinones/pharmacology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Toll-Like Receptor 4/metabolism , Tryptamines/pharmacology , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Brain/drug effects , Brain/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Dementia/complications , Dementia/drug therapy , Disease Models, Animal , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Maze Learning , Memory Disorders/drug therapy , Memory Disorders/metabolism , Oxazolidinones/therapeutic use , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT1B/metabolism , Scopolamine , Serotonin/metabolism , Serotonin 5-HT1 Receptor Agonists/therapeutic use , Superoxide Dismutase/metabolism , Tryptamines/therapeutic use
...